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Exact sampling from nonattractive distributions using summary states
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Propp and Wilson’s method of coupling from the past allows one to efficiently generateexactsamples from
attractive statistical distributions~e.g., the ferromagnetic Ising model!. This method may be generalized to
nonattractive distributions by the use ofsummary states, as first described by Huber. Using this method, we
present exact samples from a frustrated antiferromagnetic triangular Ising model and the antiferromagnetic
q53 Potts model. We discuss the advantages and limitations of the method of summary states for practical
sampling, paying particular attention to the slowing down of the algorithm at low temperature. In particular, we
show that such slowing down can occur in the absence of a physical phase transition.
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I. INTRODUCTION

In many statistical problems, physical and otherwise, i
useful to be able to draw samples from a complex distri
tion. For example, in statistical physics one is interested
the Boltzmann distribution

P~s!5
e2bE(s)

Z
, ~1!

whereE(s) describes the energy of a system in configu
tion s, b is the inverse temperature~we setkB51), andZ is
a normalizing constant~the partition function!. In general,
E(s) may be easy to evaluate for a particular configurati
but the number of possible configurations makes it impra
cal to draw directly from the distribution. Yet some efficie
method of sampling is desirable, as this would allow one
calculate properties of the system that might not be ea
computed by analytical means.

In traditional Monte Carlo sampling methods@1#, such as
the Metropolis-Hastings method@2# and Gibbs sampling@3#
~also known as the heat bath algorithm!, one constructs an
ergodic Markov chain whose stationary distribution is t
desired distribution. By starting in some state and evolv
the chain for a sufficiently long time, one can approximat
sample from the desired distribution. Unfortunately, suc
sample is exact only in the limit of infinite time. In practic
it is often difficult to determine how long to wait to achiev
sufficiently good samples, and one inevitably either produ
poor samples or wastes time by running the Markov ch
for longer than necessary.

However, in 1996, Propp and Wilson demonstrated
possibility ofexact samplingby the method of coupling from
the past, allowing one to produce perfect samples in a fi
number of steps@4#. In the most general case, their meth
requires the infeasible task of running a Markov chain
every possible initial state of the system. But for certain d
tributions, termedattractive ~such as a ferromagnetic Isin
model!, Propp and Wilson showed that the task may
greatly simplified by tracking only extremal states, perm
ting the practical calculation of exact samples. This meth
was generalized to antiattractive distributions by Ha¨ggström
1063-651X/2001/63~3!/036113~5!/$15.00 63 0361
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and Nelander@5#. More recently, Huber showed that one c
instead track just a single state that summarizes one’s kn
edge of the system@6#. Because it does not require that th
states be partially ordered, this last method—which we c
the summary state method—is applicable to nonattractive
distributions.

Using the summary state method, we have drawn ex
samples from the antiferromagnetic triangular Ising mo
and from the three-state Potts antiferromagnet on a sq
lattice. Figure 1 shows one such sample. In Sec. II, we
scribe the methods that make this possible. In Sec. III,
briefly discuss the Ising and Potts models. We present res
from the exact sampling of these models in Sec. IV. Fina
we discuss the convergence properties of the summary
method, and we suggest practical generalizations.

II. COUPLING FROM THE PAST AND THE SUMMARY
STATE METHOD

Propp and Wilson’s method of coupling from the past
based on the observation that, for a fixed choice of the r
dom numbers used to propagate a Markov chain, its poss
paths in state space from different initial states may u

FIG. 1. An exact sample from a triangular Ising antiferromag
with 14 400 spins atb54.921'0.2041 and zero applied magnet
field.
©2001 The American Physical Society13-1
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mately coalesce into a single trajectory. Once two init
states lead to the same state, they will remain in the s
state thereafter.

Consider simulating a Markov chain from every possib
initial state at some fixed timet52T, with the goal of tak-
ing a sample att50. If all the chains coalesce beforet50,
then this finite procedure yields the same results as a M
Carlo simulation started at an infinite time in the past, so
result is an exact sample. If the chains fail to coalesce,
can simply double the starting time to22T, reusing the
random numbers for the interval@2t,0# ~i.e., treating the
random numbers as a function of simulation time!, and re-
peat until coalescence is achieved.

Having to follow every possible state would make th
method exponentially costly. But for problems that admi
partial ordering of the states and which are ‘‘attractive’’
that is, which preserve the ordering under evolution of
Markov chain—the computation can be vastly simplified
tracking only the extremal states. An example of an attr
tive system is the ferromagnetic Ising model under sing
spin-flip ~Glauber! dynamics.

Huber @6# and Harvey and Neal@7# have shown that the
method of Propp and Wilson may be generalized usin
single summary state instead of a pair of extremal sta
This single state summarizes one’s knowledge of the p
sible states of the system, allowing the state of some s
systems to be uncertain.

For example, suppose the system is a collection of v
abless i taking on the values$61%. Conventional single-site
heat bath updating sets

s i°H 11 if u<P~s i511us̄ i !

21 if u.P~s i511us̄ i !,
~2!

whereu is uniformly distributed on@0,1# ands̄ i denotes the
set of all variables but thei th. To implement summary state
we allow each variable to take on the additional value
which indicates uncertainty. We then run a modified Mark
chain on this system:s i is updated according to Eq.~2! if the
result is the same for any possible assignment of61 to the
?’s in s̄ i ; otherwise,s i°?. As in the Propp and Wilson
method, we run the chain from successively longer times
the past with random numbers as a function of simulat
time, starting from an initial state that is entirely ?. When
variables remain in ? states, the algorithm has conver
and we may take a sample att50.

For the case of attractive distributions, this procedure
exactly equivalent to the Propp and Wilson scheme. T
value ? denotes variables that differ between the maxi
and minimal states, and removal of all ? states correspond
coalescence of the bounding chains. However, using a si
summary state, there is no requirement that the state
ordered in any way. Thus the summary state method can
be applied to nonattractive distributions—for example,
antiferromagnetic Ising model.

Although the samples returned by this method are ex
the algorithm does not necessarily converge after a rea
able amount of time. Huber has shown that, for antifer
03611
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magnetic spin systems at sufficiently high temperature,
expected running time of the algorithm is polynomial in t
number of spins@6#. However, for systems with a phase tra
sition, the convergence time diverges as a power law at
critical temperature, a phenomenon known as critical slo
ing down @8#.

For the attractive case, Propp and Wilson showed that
convergence time of coupling from the past is linear in t
mixing time of the Markov chain, so that there is a sense
which there is no additional cost for producing exact samp
@4#. Thus, for example, coupling from the past based on
heat bath algorithm should diverge no faster at the criti
temperature than the heat bath algorithm alone. Howe
this is not necessarily the case for the more general summ
state algorithm—indeed, we will show that it is possible f
the algorithm to diverge at a strictly higher temperature.

III. THE ISING AND POTTS MODELS

Consider the Hamiltonian

E~s!52
1

2 (
m,n

Jmnsmsn2(
m

Hmsm , ~3!

whereJmn is the coupling between spinsm andn andHm is
the value of an external magnetic field at spinm. The appro-
priate Markov chain update rule is Eq.~2! with

P~s i561us̄ i !5
e2bE(s i561)

e2bE(s i511)1e2bE(s i521)
. ~4!

In the Ising model@9#, Jmn is taken to be zero unless spin
m and n are adjacent, in which case it is some constanJ.
Cases of particular interest are the square lattice, in wh
every spin has four neighbors, and the triangular lattice, w
six neighbors per spin. In general, the behavior of Ising s
tems can vary with their spin connectivity. For both kinds
lattice, we use periodic boundary conditions.

In this paper, we use the normalizationJ561. J511
corresponds to the ferromagnetic case, in which spins pr
to point in the same direction;J521 corresponds to the
antiferromagnet. As mentioned previously, the ferromagn
case is attractive under single-spin-flip dynamics. The a
ferromagnet on a square lattice is a special case, becau
properties are isomorphic to those of a square ferromag
However, for a triangular lattice, there is no such isom
phism. With six neighbors per spin, there is no way to mi
mize the energy locally at all sites: we say the system
frustrated.

It is well known that a two-dimensional ferromagnet
Ising model exhibits a phase transition@10,11#. Below a criti-
cal temperaturebc

21 , there is spontaneous symmetry brea
ing, and the system develops a preferred spin orientatio
the absence of any magnetic field. For a square lattice,bc

5 1
2 ln(11A2)'0.440 687. At this temperature, the rela

ation time of the dynamic system diverges, a phenome
known as critical slowing down@8#. Correspondingly, there
is a divergence in the convergence time for some Mark
chain Monte Carlo algorithms, such as coupling from t
3-2



te
ri

th
re
l,

et

de

e

d
ke
s

v
. F
an

he
a

er
f

te
e

th

of

ar
g
t
o
u
on
a

old
am-
tate
ain
ugh

uffi-
arse

-
se

urs
ix
-

ay

ly-
sta-
le
uch

oxi-

er-
di-

for
ion

ns
the
nds
ples
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past, and exact samples cannot be generated for lower
peratures. Note that the triangular antiferromagnet has a c
cal point at zero temperature@12#, so we expect critical slow-
ing down only asb→`.

To circumvent the problem of nonconvergence below
critical temperature, Propp and Wilson actually used a
lated system, the Fortuin-Kasteleyn random cluster mode
generate ferromagnetic Ising samples@4,13#. Unfortunately,
this model has no obvious analog in the antiferromagn
case.

The Potts model is a generalization of the Ising mo
wherein spins may take onq different values$0,1, . . . ,
q21% @14#. Spins interact only with others of the same typ
The Hamiltonian is

E~s!52
1

2 (
m,n

Jmndsm ,sn
2(

m,k
Hm

k dsm ,k . ~5!

Specifically, we consider the antiferromagnetic Potts mo
with q53 on a square lattice with zero magnetic field. Li
the triangular Ising antiferromagnet, this model also ha
critical point at zero temperature@15#.

IV. RESULTS

A. Ising model

By implementing the summary state method, we ha
produced exact samples from the Ising and Potts models
example, Fig. 1 shows a sample from a triangular Ising
tiferromagnet consisting of 1202514 400 spins atb54.921

'0.2041 with zero applied magnetic field.
We find that the number of iterations required for t

algorithm to converge, where one iteration consists of upd
ing each spin in the lattice, diverges at a threshold temp
ture. We have studied this divergence using a lattice oN
563253969 spins. Simulations using largerN ~e.g., N
5992) suggest that the outcome is not significantly affec
by choosing a larger grid size. Figure 2 shows the div
gence, to which we have fitted a power law of the form

t5
a

~b212b t
21!b

1c. ~6!

We find that the time diverges with an exponentb51.03
60.01 at the threshold temperatureb t

2154.83960.005 ~or
b t50.206760.0002, corresponding to a correlation leng
of j t'1.6 lattice spacings, using the relationshipj
52 ln tanhb which can be inferred from the analysis
Stephenson@16#!.

This divergence is an important feature of the summ
state method. It is qualitatively similar to critical slowin
down, but note that the threshold temperature is above
critical temperature, so the divergence does not corresp
to a physical phase transition. In divergent situations the a
mented Markov chain has a metastable set of distributi
with many ?’s, such that it is very unlikely for it to enter
state with no ?’s.
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We can arrive at a very rough estimate of the thresh
temperature based on a simplified description of the dyn
ics. To draw an exact sample using the summary s
method, the system must go from a completely uncert
state to a completely certain state. Thus, it must pass thro
a state with only a few scattered ?’s. For temperatures s
ciently near the threshold, where we know that such a sp
configurationcan be reached, we might expect that the lim
iting factor is the probability that an isolated ? can cau
divergence.

Therefore, we might suppose that the divergence occ
when the probability of a single ? turning one of its s
neighbors into a ? rises above16 . We expect that the neigh
bors of any given spins i should be~on average! half up and
half down. Replacing one of these neighbors by a ?, we m
assume the configuration (↑↑↑↓↓?) without loss of general-
ity. Then the threshold temperature is determined by

12
1

11e4b
2

1

2
5

1

6
, ~7!

which has the solutionb5 1
4 ln 2'0.17.

To examine the validity of a threshold temperature ana
sis based on the persistence of single ?’s, we compiled
tistics on the stability of an equilibrium system with a sing
? added. Because we cannot create exact samples for m
of the temperature range of interest, we generated appr
mate samples by simulating for fixed time~100 iterations! a
random~infinite temperature! initial state. We then set one
spin to ? and simulated the system forward. If any unc
tainty remained after 500 iterations, we said the system
verged. Figure 3 shows the fraction of divergent trials
various temperatures. As one would expect, this fract
goes to zero very near the threshold temperature.

FIG. 2. Variation with temperature of the number of iteratio
required for convergence of the summary state algorithm for
triangular, antiferromagnetic Ising model. Each point correspo
to either 500, 1000, or 1500 exact samples, with more sam
taken at lower temperature. The solid line shows the fit to Eq.~6!.
3-3
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It is also interesting to consider how the algorithm b
haves when a uniform nonzero magnetic fieldH is applied.
Biasing the spins makes it easier for them to choose a
ticular orientation, so we would expect convergence to
easier. Figure 4 shows the region of convergence in
(b21,H) plane.

B. Potts model

In addition, we have implemented exact sampling of
Potts model for arbitraryq. Figure 5 shows an exact samp
with q53 for a square antiferromagnetic lattice of 102

510 000 spins.

FIG. 3. Fraction of equilibrium systems that diverged afte
single ? was added. The data are from 9000 trials at each tem
ture.

FIG. 4. Region of convergence for the summary state algori
on the triangular antiferromagnetic Ising model. Points in region~1!
allow convergence, whereas points in region~2! are inaccessible to
the algorithm. Each data point corresponds to 45 searches fo
threshold, each using a different set of random numbers.
03611
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A naive implementation of the summary state meth
would augment the possible spin values with a single ?.
refer to this method as algorithmA. However, it is possible
to retain more information about uncertain spins: for ea
spin, we store a binaryq-bit vector (b1 ,b2 , . . . ,bq), bi
P$0,1%. Bit bi is set to 1 if it is possible for the spin to tak
on the value i: thus the initial state of each spin isb
5(1,1, . . .,1). In updating the state of the system, we s
bi50 only when the spin cannot take on the valuei for any
allowed configuration of its neighbors. We refer to the lat
method as algorithmB.

To demonstrate the advantage of retaining more inform
tion in the summary state, we have studied the converge
properties of both algorithms. This comparison is shown
Fig. 6, based on data for a square 64254096 spin lattice. As
in the Ising study, both algorithms lead to a power law

ra-

he

FIG. 5. An exact sample from theq53 antiferromagnetic Potts
model for a 10 000 spin square lattice atb51.221'0.833.

FIG. 6. Temperature dependence of the convergence time
the square, antiferromagneticq53 Potts model under algorithmsA
and B. Each point corresponds to 1600 exact samples on a 4
spin lattice. The solid lines give fits to Eq.~6!.
3-4
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EXACT SAMPLING FROM NONATTRACTIVE . . . PHYSICAL REVIEW E 63 036113
vergence with an exponent of 1 (bA51.0460.03,bB50.99
60.02). However, the threshold temperatures for the t
algorithms are quite different:b t,A

2152.29360.005 ~or b t,A

50.43660.001, corresponding to a correlation lengthj t,A
'0.24 lattice spacings, as extrapolated from theb&3.4 be-
havior of j seen in the Monte Carlo data of Ferreira a
Sokal @15#!, whereas b t,B

2151.15760.004 (b t,B50.864
60.003,j t,B'0.58). As in the Ising example above, neith
of the divergences corresponds to a physical phase trans

V. CONCLUSIONS

We have demonstrated the use of the summary s
method for exact sampling from nonattractive distributio
@17#. However, the algorithm will require substantial im
provement before it can be used for practical sampling
both the antiferromagnetic Ising and Potts models,
method works only above a certain threshold temperat
with a power law divergence in the coalescence time at
threshold. Because most numerical studies are intereste
the low-temperature behavior of these models—espec
near the critical points at zero temperature—divergence
the running time of the algorithm presents a serious d
culty.

Although similar to the phenomenon of critical slowin
down, the divergence does not occur at a physical ph
transition. Furthermore, as the Potts example shows, the
cation of the divergence is a feature of the specific imp
mentation of the summary states, not of the underlying d
tribution. We have shown that retaining more information
the summary state allows convergence at lower temperatu
.
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Based on this result, we may propose an improved al
rithm for the triangular antiferromagnetic Ising model. A
lower temperatures, the system should be increasingly
dered, and tracking this order might make it easier to g
incremental knowledge of the state of the system. One ide
to keep track of correlations between spins by grouping th
into hexagonal clumps of seven, which can be used to tile
triangular lattice. Each tile has 275128 possible states. In
analogy to the Potts method presented earlier~in which a
q-bit vector represents the uncertainty about a spin!, repre-
senting each tile with a 128-bit vector would allow individu
ally tracking the possible arrangements of those seven sp
Within a tile, the summary state can track anticorrelatio
which we expect to arise at low temperatures. Each edge
tile can be easily summarized in a four-bit vector for co
parison with its neighboring tiles. Each tile can then upd
its summary state by considering the possible states of
neighboring edges.

Despite the difficulties we have encountered in genera
exact samples from antiferromagnetic spin systems, the t
nique of summary state sampling in general remains app
ing as a way of producing provably exact samples. We h
that further study of the method will ultimately permit effi
cient exact sampling from thermodynamic systems at a
trarily low temperatures.
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