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Exact sampling from nonattractive distributions using summary states
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Propp and Wilson’s method of coupling from the past allows one to efficiently gereratésamples from
attractive statistical distribution&.g., the ferromagnetic Ising modellhis method may be generalized to
nonattractive distributions by the use simmary statesas first described by Huber. Using this method, we
present exact samples from a frustrated antiferromagnetic triangular Ising model and the antiferromagnetic
g=3 Potts model. We discuss the advantages and limitations of the method of summary states for practical
sampling, paying particular attention to the slowing down of the algorithm at low temperature. In particular, we
show that such slowing down can occur in the absence of a physical phase transition.
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I. INTRODUCTION and Nelandef5]. More recently, Huber showed that one can
instead track just a single state that summarizes one’s knowl-
In many statistical problems, physical and otherwise, it isedge of the systerf6]. Because it does not require that the
useful to be able to draw samples from a complex distribustates be partially ordered, this last method—which we call
tion. For example, in statistical physics one is interested irthe summary state methedis applicable to nonattractive
the Boltzmann distribution distributions.
Using the summary state method, we have drawn exact
e PE(@) samples from the antiferromagnetic triangular Ising model
Z 1) and from the three-state Potts antiferromagnet on a square
lattice. Figure 1 shows one such sample. In Sec. Il, we de-
whereE(o) describes the energy of a system in ConfiguraSCfibe the methods that make this possible. In Sec. Ill, we
tion o, B is the inverse temperatutere setkg=1), andZ is briefly discuss the Ising and Potts models. We present results
a normalizing constantthe partition function In general, from the exact sampling of these models in Sec. IV. Finally,
E(o) may be easy to evaluate for a particular configurationWe discuss the convergence properties of the summary state
but the number of possible configurations makes it impractimethod, and we suggest practical generalizations.
cal to draw directly from the distribution. Yet some efficient
method of sampling is desirable, as this would allow one to |I. COUPLING FROM THE PAST AND THE SUMMARY

P(o)=

calculate properties of the system that might not be easily STATE METHOD
computed by analytical means. ) ; . .
In traditional Monte Carlo sampling methofts], such as Propp and Wilson’s method of coupling from the past is

the Metropolis-Hastings methd@] and Gibbs sampling3] based on the observation that, for a fixed choi_ce _of the ran-
(also known as the heat bath algorithrone constructs an d0m numbers used to propagate a Markov chain, its possible
ergodic Markov chain whose stationary distribution is thePaths in state space from different initial states may ulti-
desired distribution. By starting in some state and evolving
the chain for a sufficiently long time, one can approximate a
sample from the desired distribution. Unfortunately, such a
sample is exact only in the limit of infinite time. In practice,

it is often difficult to determine how long to wait to achieve
sufficiently good samples, and one inevitably either produces
poor samples or wastes time by running the Markov chain
for longer than necessary.

However, in 1996, Propp and Wilson demonstrated the
possibility ofexact samplindpy the method of coupling from
the past, allowing one to produce perfect samples in a finite
number of step$4]. In the most general case, their method
requires the infeasible task of running a Markov chain for
every possible initial state of the system. But for certain dis-
tributions, termedattractive (such as a ferromagnetic Ising
mode), Propp and Wilson showed that the task may be
greatly simplified by tracking only extremal states, permit-  F|G. 1. An exact sample from a triangular Ising antiferromagnet
ting the practical calculation of exact samples. This methodvith 14 400 spins aB=4.9"1~0.2041 and zero applied magnetic
was generalized to antiattractive distributions bygistran  field.
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mately coalesce into a single trajectory. Once two initialmagnetic spin systems at sufficiently high temperature, the
states lead to the same state, they will remain in the samexpected running time of the algorithm is polynomial in the
state thereatfter. number of spin$6]. However, for systems with a phase tran-
Consider simulating a Markov chain from every possiblesition, the convergence time diverges as a power law at the
initial state at some fixed time= —T, with the goal of tak- critical temperature, a phenomenon known as critical slow-
ing a sample at=0. If all the chains coalesce beforee0, ing down[8].
then this finite procedure yields the same results as a Monte For the attractive case, Propp and Wilson showed that the
Carlo simulation started at an infinite time in the past, so theonvergence time of coupling from the past is linear in the
result is an exact sample. If the chains fail to coalesce, ongixing time of the Markov chain, so that there is a sense in
can simply double the starting time te 2T, reusing the which there is no additional cost for producing exact samples
random numbers for the interv@lt,0] (i.e., treating the [4]. Thus, for example, coupling from the past based on the
random numbers as a function of simulation tjmand re- heat bath algorithm should diverge no faster at the critical
peat until coalescence is achieved. temperature than the heat bath algorithm alone. However,
Having to follow every possible state would make this this is not necessarily the case for the more general summary
method exponentially costly. But for problems that admit astate algorithm—indeed, we will show that it is possible for
partial ordering of the states and which are “attractive”— the algorithm to diverge at a strictly higher temperature.
that is, which preserve the ordering under evolution of the
Markov chain—the computation can be vastly simplified by IIl. THE ISING AND POTTS MODELS
tracking only the extremal states. An example of an attrac- i o
tive system is the ferromagnetic Ising model under single- Consider the Hamiltonian
spin-flip (Glaubej dynamics. 1
Huber[6] and Harvey and Nedl7] have shown that the E(0)=—= 2 JnnTmOn— > Hmom, 3
method of Propp and Wilson may be generalized using a 2 mn m
single summary state instead of a pair of extremal states. . ] ] ]
This single state summarizes one’s knowledge of the pos¥hereéJm, is the coupling between spims andn andHy, is
sible states of the system, allowing the state of some sufh€ value of an external magnetic field at spinThe appro-

For example, suppose the system is a collection of vari- B
A i A . o e_BE(‘Ti*il)
ableso; taking on the value$§*1}. Conventional single-site P(oy=%1[0;)= 4)
heat bath updating sets T e BE(0j=+1) 4 o= BE(0=—1)
+1 ifusP(o;=+1|0y) In the Ising mode[9], J,,, is taken to be zero unless spins
o> 1 — (2 m and n are adjacent, in which case it is some constant
if u>P(0i=+1|oy), Cases of particular interest are the square lattice, in which

_ every spin has four neighbors, and the triangular lattice, with
whereu is uniformly distributed orf 0,1] ando; denotes the six neighbors per spin. In general, the behavior of Ising sys-
set of all variables but thigh. To implement summary states, tems can vary with their spin connectivity. For both kinds of
we allow each variable to take on the additional value Aattice, we use periodic boundary conditions.
which indicates uncertainty. We then run a modified Markov  In this paper, we use the normalizatider =1. J=+1
chain on this system; is updated according to EQ) if the  corresponds to the ferromagnetic case, in which spins prefer
result is the same for any possible assignment-Gfto the to point in the same direction]=—1 corresponds to the
2's in ;i; otherwise,o;—>?. As in the Propp and Wilson antiferromagnet. As mentioned previously, the ferromagnetic
method, we run the chain from successively longer times irfase is attractive under single-spin-flip dynamics. The anti-
the past with random numbers as a function of simulatiorferromagnet on a square lattice is a special case, because its
time, starting from an initial state that is entirely ?. When noproperties are isomorphic to those of a square ferromagnet.
variables remain in ? states, the algorithm has convergedjowever, for a triangular lattice, there is no such isomor-
and we may take a sample at 0. phism. With six neighbors per spin, there is no way to mini-

For the case of attractive distributions, this procedure ignize the energy locally at all sites: we say the system is
exactly equivalent to the Propp and Wilson scheme. Thdrustrated
value ? denotes variables that differ between the maximal It is well known that a two-dimensional ferromagnetic
and minimal states, and removal of all ? states corresponds §ing model exhibits a phase transiti0,11]. Below a criti-
coalescence of the bounding chains. However, using a singkal temperaturgs_ ", there is spontaneous symmetry break-
summary state, there is no requirement that the states i3@g, and the system develops a preferred spin orientation in
ordered in any way. Thus the summary state method can aldbe absence of any magnetic field. For a square latfige,
be applied to nonattractive distributions—for example, the=%In(1+2)~0.440687. At this temperature, the relax-
antiferromagnetic Ising model. ation time of the dynamic system diverges, a phenomenon
Although the samples returned by this method are exacknown as critical slowing dowfi8]. Correspondingly, there
the algorithm does not necessarily converge after a reasoiis a divergence in the convergence time for some Markov
able amount of time. Huber has shown that, for antiferrochain Monte Carlo algorithms, such as coupling from the
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past, and exact samples cannot be generated for lower terr 1¢°
peratures. Note that the triangular antiferromagnet has a criti

cal point at zero temperatuf&2], so we expect critical slow-

ing down only asB—o°.

To circumvent the problem of nonconvergence below the
critical temperature, Propp and Wilson actually used a re-o 10°
lated system, the Fortuin-Kasteleyn random cluster model, tcS
generate ferromagnetic Ising sampldsl3]. Unfortunately,
this model has no obvious analog in the antiferromagnetic
case.

The Potts model is a generalization of the Ising model 810}
wherein spins may take ong different values{0,1, ...,
g—1} [14]. Spins interact only with others of the same type.
The Hamiltonian is

nvergence tim

. K 6 8 1I0 12 14 16
%Jmna,,m,,,n %Hmﬁ,,m,k. (5) g

FIG. 2. Variation with temperature of the number of iterations
Specifically, we consider the antiferromagnetic Potts modetequired for convergence of the summary state algorithm for the
with g=3 on a square lattice with zero magnetic field. Like triangular, antiferromagnetic Ising model. Each point corresponds
the triangular Ising antiferromagnet, this model also has &o either 500, 1000, or 1500 exact samples, with more samples
critical point at zero temperatufé5s). taken at lower temperature. The solid line shows the fit to(EQ.

E(o)=-—

N[ =

We can arrive at a very rough estimate of the threshold
temperature based on a simplified description of the dynam-
A. Ising model ics. To draw an exact sample using the summary state

By implementing the summary state method, we haVénethod, the system must go from a completely uncertain

produced exact samples from the Ising and Potts models. Fofate to a_completely certain state. Thus, it must pass through
example, Fig. 1 shows a sample from a triangular Ising and State with only a few scattered ?’s. For temperatures suffi-

tiferromagnet consisting of 126 14 400 spins a=4.9 1 ciently near the threshold, where we know that such a sparse
~0.2041 with zero applied magnetic field ' configurationcan be reached, we might expect that the lim-
We find that the number of iterations required for theg'.ng factor is the probability that an isolated ? can cause
ivergence.

algorithm to converge, where one iteration consists of updat- Theref iaht that the di
ing each spin in the lattice, diverges at a threshold tempera- erefore, we might suppose that the divergence occurs

; o : ; hen the probability of a single ? turning one of its six
ture. We have studied this divergence using a latticélof """ ! . )
—632=3969 spins. Simulations gusing Iarg?N (e.g., N neighbors |m)_ a? rises above. We expect that the neigh-
=99%) suggest that the outcome is not significantly affecteofflolrfS dOf anyR9|v<|an Spi@; shoﬂﬂ befon gv;tr)ag)agalf U,E) and
by choosing a larger grid size. Figure 2 shows the diver- alr down. Repiacing one ot thése neighbors by a 7, we may

; . assume the configuration {1 ] | ?) without loss of general-
gence, to which we have fitted a power law of the form ity. Then the threshold temperature is determined by

IV. RESULTS

a

t=———+c. (6)
(B =g hP 1

1+e*

11
2% v

We find that the time diverges with an expondmt 1.03
+0.01 at the threshold temperatysg *=4.839+0.005(or  which has the solutiog=3In 2~0.17.
B:=0.2067-0.0002, corresponding to a correlation length  To examine the validity of a threshold temperature analy-
of &~1.6 lattice spacings, using the relationshi sis based on the persistence of single ?’s, we compiled sta-
=—IntanhpB which can be inferred from the analysis of tistics on the stability of an equilibrium system with a single
Stephensonl6]). ? added. Because we cannot create exact samples for much
This divergence is an important feature of the summaryof the temperature range of interest, we generated approxi-
state method. It is qualitatively similar to critical slowing mate samples by simulating for fixed tin(®00 iterationy a
down, but note that the threshold temperature is above theandom (infinite temperaturginitial state. We then set one
critical temperature, so the divergence does not corresporspin to ? and simulated the system forward. If any uncer-
to a physical phase transition. In divergent situations the augainty remained after 500 iterations, we said the system di-
mented Markov chain has a metastable set of distributionserged. Figure 3 shows the fraction of divergent trials for
with many ?’s, such that it is very unlikely for it to enter a various temperatures. As one would expect, this fraction
state with no ?’s. goes to zero very near the threshold temperature.
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single ? was added. The data are from 9000 trials at each tempergde| for a 10 000 spin square lattice/z# 1.2 1~0.833.

ture.
A naive implementation of the summary state method
It is also interesting to consider how the algorithm be-would augment the possible spin values with a single ?. We
haves when a uniform nonzero magnetic fields applied.  refer to this method as algoritha However, it is possible
Biasing the spins makes it easier for them to choose a paf© retain more information about uncertain spins: for each

ticular orientation, so we would expect convergence to b&pin, we store a binary-bit vector (b,,b;, ... by), b;
easier. Figure 4 shows the region of convergence in the={0,1. Bit b; is set to 1 if it is possible for the spin to take
(B~ LH) plane. on the valuei: thus the initial state of each spin is
=(1,1,...,1). In updating the state of the system, we set
b;=0 only when the spin cannot take on the valder any
B. Potts model allowed configuration of its neighbors. We refer to the latter

In addition, we have implemented exact sampling of theMethod as algorithni. o _
Potts model for arbitrarg. Figure 5 shows an exact sample . 10 demonstrate the advantage of retaining more informa-

with g=3 for a square antiferromagnetic lattice of 300 tion in the summary state, we have studied the convergence
=10000 spins. properties of both algorithms. This comparison is shown in

Fig. 6, based on data for a squar€ 64096 spin lattice. As
in the Ising study, both algorithms lead to a power law di-
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FIG. 4. Region of convergence for the summary state algorithm
on the triangular antiferromagnetic Ising model. Points in red¢ion FIG. 6. Temperature dependence of the convergence time for

allow convergence, whereas points in regi@hare inaccessible to the square, antiferromagnetic= 3 Potts model under algorithn#s
the algorithm. Each data point corresponds to 45 searches for thend B. Each point corresponds to 1600 exact samples on a 4096
threshold, each using a different set of random numbers. spin lattice. The solid lines give fits to E(p).
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vergence with an exponent of b{=1.04+0.03bg=0.99 Based on this result, we may propose an improved algo-
+0.02). However, the threshold temperatures for the twaithm for the triangular antiferromagnetic Ising model. At

algorithms are quite differen';gtszz,z%t 0.005 (or B,  lower temperatures, the system should be increasingly or-
=0.436+0.001, corresponding to a correlation lengtf, ~ dered, and tracking this order might make it easier to gain
~0.24 lattice spacings, as extrapolated from gfhe3.4 be-  incremental knowledge of the state of the system. One idea is
havior of ¢ seen in the Monte Carlo data of Ferreira andto keep track of correlations between spins by grouping them
Sokal [15]), whereas :Bt_Bl: 1.157+0.004 (B;5=0.864 |rrto hexagonarl clumps of seven, which can pe used to tile the
+0.003£ 5~0.58). As in the Ising example above, neither triangular lattice. Each tile has’2 128 possible states. In

of the divergences corresponds to a physical phase transitioghalogy to the Potts method presented eaflierwhich a
g-bit vector represents the uncertainty about a jspiepre-

senting each tile with a 128-bit vector would allow individu-

ally tracking the possible arrangements of those seven spins.
We have demonstrated the use of the summary state/ithin a tile, the summary state can track anticorrelation,

method for exact sampling from nonattractive distributionswhich we expect to arise at low temperatures. Each edge of a

[17]. However, the algorithm will require substantial im- tile can be easily summarized in a four-bit vector for com-

provement before it can be used for practical sampling. Irparison with its neighboring tiles. Each tile can then update

both the antiferromagnetic Ising and Potts models, thats summary state by considering the possible states of the

method works only above a certain threshold temperatureneighboring edges.

with a power law divergence in the coalescence time at the Despite the difficulties we have encountered in generating

threshold. Because most numerical studies are interested @xact samples from antiferromagnetic spin systems, the tech-

the low-temperature behavior of these models—especiallpique of summary state sampling in general remains appeal-

near the critical points at zero temperature—divergence oihg as a way of producing provably exact samples. We hope

the running time of the algorithm presents a serious diffi-that further study of the method will ultimately permit effi-

culty. cient exact sampling from thermodynamic systems at arbi-
Although similar to the phenomenon of critical slowing trarily low temperatures.

down, the divergence does not occur at a physical phase

trarrsition. Furthermore, as the Potts example sho_vr_/s,_the lo- ACKNOWLEDGMENTS

cation of the divergence is a feature of the specific imple-

mentation of the summary states, not of the underlying dis- We wish to thank Radford Neal and David Wilson for

tribution. We have shown that retaining more information inseveral helpful discussions. D.J.C.M. is supported by the

the summary state allows convergence at lower temperatureSatsby Charitable Foundation and by IBM ri.

V. CONCLUSIONS

[1] For reviews of Monte Carlo sampling, see, for examplente [8] P. C. Hohenberg and B. I. Halperin, Rev. Mod. PHA,. 435
Carlo Methods in Statistical Physic&nd ed., edited by K. (1977).
Binder (Springer-Verlag, Berlin, 19791986; Applications of ~ [9] E. Ising, Z. Phys21, 613(1925.
the Monte Carlo Method in Statistical Physi@nd ed., edited  [10] L. Onsager, Phys. Re®5, 117 (1944).
by K. Binder (Springer-Verlag, Berlin, 1984 1987; A.D. [11] For a general overview of the theory of phase transitions and
Sokal, in Functional Integration: Basics and Applications critical phenomena, see, for example, J. J. Binney, N. J. Dow-
Proceedings of the 1996 CasgeSummer School, edited by C. rick, A. J. Fisher, and M. E.J. Newmanhe Theory of_CrltlcaI
DeWitt-Morette, P. Cartier, and A. Folac¢Plenum, New Phenomena: An Introduction to the Renormalization Group
York, 1997. (C;]Iaren_tlj_on Press, Oxcr;or:, 1;39)92\]' G?IdenfeI%Lgﬁées on
: Phase Transitions and the Renormalization Gr ison-
ey S romg ™ % Wiy, Reain, i, 1992C b, The Crical poin
[3] S. Geman and D. Geman, IEEE Trans. Pattern Anal. Mach, Historical Introduction tq the Modern Theory of Critical Phe-
Intell. 6, 721 (1984 ' nomena(Taylor & Francis, London, 1996
" : ' [12] G. H. Wannier, Phys. Rew.9, 357 (1950.
[4]J. G. Propp and D. B. Wilson, Random Struct. Afy.223 [13] P. W. Kasteleyn and C. M. Fortuin, J. Phys. Soc. J#.11

(1996?.' . (1969; C. M. Fortuin and P.W. Kasteleyn, Physi¢amster-
[5] O. Haggstron and K. Nelander, Stat. Neerlan®2, 360 dam 57, 536(1972; C. M. Fortuin,ibid. 58, 393 (1972: 59,
(1998. . _ 545 (1972.
[6] M. Huber, inProceedings of the 30th ACM Symposium on the[14] R. B. Potts, Proc. Cambridge Philos. S48, 106(1952; F. Y.
Theory of Computing(ACM, New York, 1998, p. 31. Wu, Rev. Mod. Phys54, 235 (1982.

[7] M. Harvey and R. M. Neal, irUncertainty in Artificial Intel- [15] S. J. Ferreira and A. D. Sokal, J. Stat. Ph§6. 461 (1999.
ligence: Proceedings of the 16th Confereneglited by C. [16] J. Stephenson, J. Math. Phyid, 413 (1970.
Boutilier and M. Goldszmid{Morgan Kaufmann, San Fran- [17] Further information on exact Ising and Potts samples can be
cisco, 2000, p. 256. found at http://wol.ra.phy.cam.ac.uk/mackay/exact.

036113-5



